首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1424篇
  免费   116篇
  国内免费   195篇
化学   1022篇
晶体学   12篇
力学   33篇
综合类   6篇
数学   14篇
物理学   648篇
  2023年   53篇
  2022年   34篇
  2021年   33篇
  2020年   26篇
  2019年   39篇
  2018年   30篇
  2017年   48篇
  2016年   52篇
  2015年   45篇
  2014年   92篇
  2013年   140篇
  2012年   83篇
  2011年   96篇
  2010年   74篇
  2009年   100篇
  2008年   87篇
  2007年   128篇
  2006年   96篇
  2005年   86篇
  2004年   63篇
  2003年   40篇
  2002年   42篇
  2001年   27篇
  2000年   18篇
  1999年   17篇
  1998年   22篇
  1997年   26篇
  1996年   21篇
  1995年   18篇
  1994年   9篇
  1993年   12篇
  1992年   10篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有1735条查询结果,搜索用时 125 毫秒
1.
Thin film composite (TFC) reverse osmosis (RO) membranes are semipermeable membranes that are utilized in water purification or water desalination systems. Discarding these membranes after end-of-life leads to environmental problems. Reusing old TFC-RO membranes is one way to solve this problem. For this reason, in this study, used TFC-RO membranes were coated with polydimethylsiloxane (PDMS) for CO2/N2 gas separation application. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was utilized to confirm the crosslinking of coated PDMS. The morphology of PDMS/TFC-RO membranes was characterized using scanning electron microscopy (SEM). The parameters that can affect performance of prepared membranes (N2 permeance and CO2/N2 selectivity) are concentration of PDMS solution, coating time, solvent evaporation time and curing temperature and time. Given that the used membranes don't have uniform surfaces, the first step of this study was to investigate the effect of the above mentioned factors on virgin membranes using fractional factorial design (FFD) of experiments. The results obtained showed that PDMS concentration is the most significant factor that has a negative effect on N2 permeance and positive effect on CO2/N2 selectivity. The reported CO2/N2 selectivity of PDMS membranes was 11–12, but this selectivity for prepared PDMS/TFC-RO membranes was in the range of 6.7–22.5. After determining optimum conditions, the gas separation performance of PDMS coated used TFC-RO membrane under these conditions was finally determined. The results showed that the used membranes had a better performance than virgin membranes.  相似文献   
2.
《中国化学快报》2020,31(7):1768-1772
In recent years, the research of nitrogen reduction reaction (NRR) under ambient conditions has attracted wide attention for their relatively low energy consumption, in which rational design of electrocatalysts is the key to achieve high-performance NRR. Metal-organic frameworks (MOFs), as a new kind of porous material, have been intensively studied in the past few decades owing to not only their structural versatility and tunability but also intrinsic porosity. Due to their structural features, MOFs also have potential applications in mild condition electrocatalysis of NRR. In this review, the recently experimental and theoretical studies of MOFs in NRR electrocatalysts are briefly summarized.  相似文献   
3.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
4.
Atomically dispersed Fe was designed on TiO2 and explored as a Janus electrocatalyst for both nitrogen oxidation reaction (NOR) and nitrogen reduction reaction (NRR) in a two-electrode system. Pulsed electrochemical catalysis (PE) was firstly involved to inhibit the competitive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Excitingly, an unanticipated yield of 7055.81 μmol h−1 g−1cat. and 12 868.33 μmol h−1 g−1cat. were obtained for NOR and NRR at 3.5 V, respectively, 44.94 times and 7.8 times increase in FE than the conventional constant voltage electrocatalytic method. Experiments and density functional theory (DFT) calculations revealed that the single-atom Fe could stabilize the oxygen vacancy, lower the energy barrier for the vital rupture of N≡N, and result in enhanced N2 fixation performance. More importantly, PE could effectively enhance the N2 supply by reducing competitive O2 and H2 agglomeration, inhibit the electrocatalytic by-product formation for longstanding *OOH and *H intermediates, and promote the non-electrocatalytic process of N2 activation.  相似文献   
5.
The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 μmol h−1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3 and NO2. Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science.  相似文献   
6.
Solid-state batteries (SSBs) that use solid electrolytes instead of flammable liquid electrolytes have the potential to generate higher specific capacity and offer better safety. Magnesium (Mg) based SSBs with Mg metal anodes are considered to be one of the most promising energy storage candidates, because it gives high theoretical volumetric capacities of 3830 mAh cm−3. Here, we demonstrate an atomic layer deposition (ALD) process with a double nitrogen plasma process that successfully produces nitrogen-incorporated magnesium phosphorus oxynitride (MgPON) solid-state electrolyte (SSE) thin films at a low deposition temperature of 125 °C. The ALD MgPON SSEs exhibit an ionic conductivity of 0.36 and 1.2 μS cm−1 at 450 and 500 °C, respectively. The proposed ALD strategy shows the ability of conformal deposition nitrogen-doped SSEs on pattered substrates and is attractive for using nitride ion-conducing films as protective or wetting interlayers in solid-state Mg and Li batteries.  相似文献   
7.
How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1 μmol mgcat−1 is delivered at −0.6 V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.  相似文献   
8.
The fixing of N2 to NH3 is challenging due to the inertness of the N≡N bond. Commercially, ammonia production depends on the energy-consuming Haber-Bosch (H−B) process, which emits CO2 while using fossil fuels as the sources of hydrogen and energy. An alternative method for NH3 production is the electrochemical nitrogen reduction reaction (NRR) process as it is powered by renewable energy sources. Here, we report a tiara-like nickel-thiolate cluster, [Ni6(PET)12] (where, PET=2-phenylethanethiol)] as an efficient electro-catalyst for the electrochemical NRR at ambient conditions. Ammonia (NH3: 16.2±0.8 μg h−1 cm−2) was the only nitrogenous product over the potential of −2.3 V vs. Fc+/Fc with a Faradaic efficiency of 25%±1.7. Based on theoretical calculations, NRR by [Ni6(PET)12] proceeds through both the distal and alternating pathways with an onset potential of −1.84 V vs. RHE (i.e., −2.46 V vs. Fc+/Fc) which corroborates with the experimental findings.  相似文献   
9.
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC , which endows aerobic N2-fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC /A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15N2 atmosphere led to the enrichment of 15N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2.  相似文献   
10.
Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust “quasi-solid–gas” state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 μg h−1 mg−1cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 yield rate up to 15.7 μg h−1 mg−1cat. and FE up to 3.4 % in nitrogen oxidation reaction).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号